Skip to main content
Log in

Paracetamol and metabolite pharmacokinetics in infants

  • Pharmacokinetics and Disposition
  • Published:
European Journal of Clinical Pharmacology Aims and scope Submit manuscript

Abstract

Background

Data concerning metabolism of paracetamol in infants are scant. Previous studies have examined urinary metabolite recovery rates after a single dose of paracetamol in either neonates (<6 weeks) or children (3–9 years). There are no studies investigating infants.

Methods

Infants (n=47) undergoing major craniofacial surgery were given paracetamol 19–45 mg/kg 6-, 8-, or 12-hourly as either elixir or suppository formulation for postoperative analgesia, after a loading dose of 33–59 mg/kg rectally during the operation. Serum was assayed for paracetamol concentration in 40 of these infants at 5, 8, 11, 14, 17 and 20 h postoperatively. Urine samples were collected every 3 h for 24 h in 15 of these infants. The clearances of paracetamol to glucuronide and sulphate metabolites as well as the urinary clearance of unmetabolised paracetamol were estimated using non-linear, mixed-effects models.

Results

Mean (±SD) age and weight of the patients were 11.8±2.5 months and 9.1±1.9 kg. Clearances of paracetamol to paracetamol-glucuronide (%CV) and to paracetamol-sulphate were 6.6 (11.5) l/h and 7.5 (11.5) l/h respectively, standardised to a 70-kg person using allometric '1/4 power' models. Glucuronide formation clearance, but not sulphate formation, was related to age and increased with age from a predicted value in a neonate of 2.73 l/h/70 kg to a mature value of 6.6 l/h/70 kg with a maturation half-life of 8.09 months. Urine clearance of paracetamol-glucuronide, paracetamol-sulphate and unchanged paracetamol (%CV) were, respectively, 2.65, 3.03 and 0.55 (28) l/h/70 kg. The urine clearance of unchanged paracetamol and metabolites was related to urine volume flow rate. Clearance attributable to pathways other than these measured in urine was not identifiable. The glucuronide/sulphate formation clearance ratio was 0.69 at 12 months of age. Sulphate metabolism contributed 50% towards paracetamol clearance.

Conclusion

Glucuronide formation clearance increases with age in the infant age range but sulphate formation does not. Renal clearance of paracetamol and its metabolites increases with urine flow rate. This and other studies show that paracetamol metabolism to glucuronide appears to be similar in infants and children, but in adults is increased in comparison with children. Oxidative pathways were undetectable in this infant study and may explain, in part, the reduced incidence of hepatotoxicity in infants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

References

  1. 't Jong GW, Vulto AG, de Hoog M, Schimmel KJ, Tibboel D, van den Acker JN (2001) A survey of the use of off-label and unlicensed drugs in a Dutch children's hospital. Pediatrics 108:1089–1093

    PubMed  Google Scholar 

  2. Prescott LF (1996) Paracetamol (paracetamol). A critical bibliographic review. Taylor and Francis Publishers, London

  3. Manyike PT, Kharasch ED, Kalhorn TF, Slattery JT (2000) Contribution of CYP2E1 and CYP3A to paracetamol reactive metabolite formation. Clin Pharmacol Ther 67:275–282

    CAS  PubMed  Google Scholar 

  4. Bergman K, Muller L, Teigen SW (1996) Series: current issues in mutagenesis and carcinogenesis, no. 65. The genotoxicity and carcinogenicity of paracetamol: a regulatory (re)view. Mutat Res 349:263–288

    Article  CAS  PubMed  Google Scholar 

  5. Anderson BJ, van Lingen RA, Hansen TG, Lin YC, Holford NH (2002) Acetaminophen developmental pharmacokinetics in premature neonates and infants: a pooled population analysis. Anesthesiology 96:1336–1345

    CAS  PubMed  Google Scholar 

  6. van der Marel CD, van Lingen RA, Pluim MA, et al (2001) Analgesic efficacy of rectal versus oral paracetamol in children after major craniofacial surgery. Clin Pharmacol Ther 70:82–90

    PubMed  Google Scholar 

  7. McGrath PA, Brigham MC (1992) The assessment of pain in children and adolescents. In: Turk DC, Melzack R (eds) Handbook of pain assessment. The Guilford Press, New York, pp 295–314

  8. Beal SL, Sheiner LB, Boeckmann A (1999) Nonmem user's guide. Division of Pharmacology, University of California, San Francisco

  9. Lowenthal DT, Oie S, Van Stone JC, Briggs WA, Levy G (1976) Pharmacokinetics of paracetamol elimination by anephric patients. J Pharmacol Exp Ther 196:570–578

    CAS  PubMed  Google Scholar 

  10. Anderson BJ, Woollard GA, Holford NHG (2000) A model for size and age changes in the pharmacokinetics of paracetamol in neonates, infants and children. Br J Clin Pharmacol 50:125–134

    CAS  PubMed  Google Scholar 

  11. Holford NHG (1996) A size standard for pharmacokinetics. Clin Pharmacokinet 30:329–332

    Google Scholar 

  12. Peters HP (1983) Physiological correlates of size. In: Beck E, Birks HJB, Conner EF (eds) The ecological implications of body size. Cambridge University Press, Cambridge, pp 48–53

  13. Prothero JW (1980) Scaling of blood parameters in animals. Comp Biochem Physiol A67:649–657

    Article  Google Scholar 

  14. Gabrielsson J, Weiner D (1994) Interspecies scaling. In: Gabrielsson J, Weiner D (eds) Pharmacokinetic and pharmacodynamic data analysis. Swedish Pharmaceutical Press Ltd, Stockholm, pp 153–171

  15. West GB, Brown JH, Enquist BJ (1997) A general model for the origin of allometric scaling laws in biology. Science 276:122–126

    CAS  PubMed  Google Scholar 

  16. West GB, Brown JH, Enquist BJ (1999) The fourth dimension of life: fractal geometry and allometric scaling of organisms. Science 284:1677–1679

    CAS  PubMed  Google Scholar 

  17. van Lingen RA, Deinum JT, Quak JM, et al (1999) Pharmacokinetics and metabolism of rectally administered paracetamol in preterm neonates. Arch Dis Child Fetal Neonatal Ed 80:F59–F63

    PubMed  Google Scholar 

  18. Miller RP, Roberts RJ, Fischer LT (1976) Paracetamol elimination kinetics in neonates, children and adults. Clin Pharmacol Ther 19:284–294

    CAS  PubMed  Google Scholar 

  19. Alam SN, Roberts RJ, Fischer LJ (1977) Age-related differences in salicylamide and paracetamol conjugation in man. J Pediatr 90:130–135

    CAS  PubMed  Google Scholar 

  20. Levy G, Khanna NN, Soda DM, Tsuzuki O, Stern L (1975) Pharmacokinetics of paracetamol in the human neonate; formation of acetaminophinglycuronide and sulphate in relation to plasma bilirubin concentration and D-glucoric acid excretion. Pediatrics 55:818–825

    CAS  PubMed  Google Scholar 

  21. Anderson BJ, McKee AD, Holford NH (1997) Size, myths and the clinical pharmacokinetics of analgesia in paediatric patients. Clin Pharmacokinet 33:313–327

    Google Scholar 

  22. de Wildt SN, Kearns GL, Leeder JS, van den Anker JN (1999) Glucuronidation in humans. Pharmacogenetic and developmental aspects. Clin Pharmacokinet 36:439–452

    PubMed  Google Scholar 

  23. Miners JO, Osborne NJ, Tonkin AL, Birkett DJ (1992) Perturbation of paracetamol urinary metabolic ratios by urine flow rate. Br J Clin Pharmacol 34:359–362

    CAS  PubMed  Google Scholar 

  24. Barraclough MA (1972) Effect of vasopressin on the reabsorption of phenacetin and its metabolites from the tubular fluid in man. Clin Sci 43:709–713

    CAS  PubMed  Google Scholar 

  25. West JR, Smith HW, Chasis H (1948) Glomerular filtration rate, effective renal blood flow, and maximal tubular excretory capacity in infancy. J Pediatr 32:10–18

    Google Scholar 

  26. Prescott LF, Wright N (1973) The effects of hepatic and renal damage on paracetamol metabolism and excretion following overdosage. A pharmacokinetic study. Br J Pharmacol 49:602–613.

    CAS  PubMed  Google Scholar 

  27. Warner A (1986) Drug use in the neonate: interrelationships of pharmacokinetics, toxicity, and biochemical maturity. Clin Chem 32:721–727

    CAS  PubMed  Google Scholar 

  28. Greene JW, Craft L, Ghishan F (1983) Paracetamol poisoning in infancy. Am J Dis Child 137:386–387

    CAS  PubMed  Google Scholar 

  29. al Obaidy SS, Li Wan Po A, McKiernan PJ, Glasgow JF, Millership J (1995) Assay of paracetamol and its metabolites in urine, plasma and saliva of children with chronic liver disease. J Pharm Biomed Anal 13:1033–1039

    Article  PubMed  Google Scholar 

  30. Roberts I, Robinson MJ, Mughal MZ, Ratcliffe JG, Prescott LF (1984) Paracetamol metabolites in the neonate following maternal overdose. Br J Pharmacol 18:201–206

    CAS  Google Scholar 

  31. Mitchell MC, Hanew T, Meredith CG, Schenker S (1983) Effects of oral contraceptive steroids on paracetamol metabolism and elimination. Clin Pharmacol Ther 34:48–53

    CAS  PubMed  Google Scholar 

  32. Sonne J, Poulsen HE, Loft S, et al (1988) Therapeutic doses of codeine have no effect on paracetamol clearance or metabolism. Eur J Clin Pharmacol 35:109–111

    CAS  PubMed  Google Scholar 

  33. Mitchell MC, Schenker S, Speeg KV, Jr (1984) Selective inhibition of paracetamol oxidation and toxicity by cimetidine and other histamine H2-receptor antagonists in vivo and in vitro in the rat and in man. J Clin Invest 73:383–391

    CAS  PubMed  Google Scholar 

  34. Miners JO, Penhall R, Robson RA, Birkett DJ (1988) Comparison of paracetamol metabolism in young adult and elderly males. Eur J Clin Pharmacol 35:157–160

    CAS  PubMed  Google Scholar 

  35. Wynne HA, Cope LH, Herd B, Rawlins MD, James OF, Woodhouse KW (1990) The association of age and frailty with paracetamol conjugation in man. Age Ageing 19:419–424

    CAS  PubMed  Google Scholar 

  36. Hoffman DA, Wallace SM, Verbeeck RK (1990) Circadian rhythm of serum sulphate levels in man and paracetamol pharmacokinetics. Eur J Clin Pharmacol 39:143–148

    Google Scholar 

  37. Baraka OZ, Truman CA, Ford JM, Roberts CJ (1990) The effect of propranolol on paracetamol metabolism in man. Br J Clin Pharmacol 29:261–264

    CAS  PubMed  Google Scholar 

  38. Rumble RH, Roberts MS, Denton MJ (1991) Effects of posture and sleep on the pharmacokinetics of paracetamol (paracetamol) and its metabolites. Clin Pharmacokinet 20:167–173

    CAS  PubMed  Google Scholar 

  39. Miners JO, Robson RA, Birkett DJ (1986) Paracetamol metabolism in pregnancy. Br J Clin Pharmacol 22:359–362

    CAS  PubMed  Google Scholar 

  40. Miners JO, Attwood J, Birkett DJ (1984) Determinants of paracetamol metabolism: effect of inducers and inhibitors of drug metabolism on paracetamol's metabolic pathways. Clin Pharmacol Ther 35:480–486

    CAS  PubMed  Google Scholar 

  41. Ismail S, Na Bangchang K, Karbwang J, Back DJ, Edwards G (1995) Paracetamol disposition in Thai patients during and after treatment of falciparum malaria. Eur J Clin Pharmacol 48:65–69

    CAS  PubMed  Google Scholar 

  42. Kamali F, Thomas SH, Ferner RE (1993) Paracetamol elimination in patients with non-insulin dependent diabetes mellitus. Br J Clin Pharmacol 35:58–61

    CAS  PubMed  Google Scholar 

  43. Haderslev KV, Sonne J, Poulsen HE, Loft S (1998) Paracetamol metabolism in patients with ulcerative colitis. Br J Clin Pharmacol 46:513–516

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dick Tibboel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

van der Marel, C.D., Anderson, B.J., van Lingen, R.A. et al. Paracetamol and metabolite pharmacokinetics in infants. Eur J Clin Pharmacol 59, 243–251 (2003). https://doi.org/10.1007/s00228-003-0608-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00228-003-0608-0

Keywords

Navigation