Skip to main content
Log in

Hypopituitarism following radiotherapy

  • Published:
Pituitary Aims and scope Submit manuscript

Abstract

Deficiencies in anterior pituitary hormones secretion ranging from subtle to complete occur following radiation damage to the hypothalamic–pituitary (h–p) axis, the severity and frequency of which correlate with the total radiation dose delivered to the h–p axis and the length of follow up. Selective radiosensitivity of the neuroendocrine axes, with the GH axis being the most vulnerable, accounts for the high frequency of GH deficiency, which usually occurs in isolation following irradiation of the h–p axis with doses less than 30 Gy. With higher radiation doses (30–50 Gy), however, the frequency of GH insufficiency substantially increases and can be as high as 50–100%. Compensatory hyperstimulation of a partially damaged h–p axis may restore normality of spontaneous GH secretion in the context of reduced but normal stimulated responses; at its extreme, endogenous hyperstimulation may limit further stimulation by insulin-induced hypoglycaemia resulting in subnormal GH responses despite normality of spontaneous GH secretion in adults. In children, failure of the hyperstimulated partially damaged h–p axis to meet the increased demands for GH during growth and puberty may explain what has previously been described as radiation-induced GH neurosecretory dysfunction and, unlike in adults, the ITT remains the gold standard for assessing h–p functional reserve. Thyroid-stimulating hormone (TSH) and ACTH deficiency occur after intensive irradiation only (>50 Gy) with a long-term cumulative frequency of 3–6%. Abnormalities in gonadotrophin secretion are dose-dependent; precocious puberty can occur after radiation dose less than 30 Gy in girls only, and in both sexes equally with a radiation dose of 30–50 Gy. Gonadotrophin deficiency occurs infrequently and is usually a long-term complication following a minimum radiation dose of 30 Gy. Hyperprolactinemia, due to hypothalamic damage leading to reduced dopamine release, has been described in both sexes and all ages but is mostly seen in young women after intensive irradiation and is usually subclinical. A much higher incidence of gonadotrophin, ACTH and TSH deficiencies (30–60% after 10 years) occur after more intensive irradiation (>60 Gy) used for nasopharyngeal carcinomas and tumors of the skull base, and following conventional irradiation (30–50 Gy) for pituitary tumors. The frequency of hypopituitarism following stereotactic radiotherapy for pituitary tumors is mostly seen after long-term follow up and is similar to that following conventional irradiation. Radiation-induced anterior pituitary hormone deficiencies are irreversible and progressive. Regular testing is mandatory to ensure timely diagnosis and early hormone replacement therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Thames HD, Hendry JH (1987) Response of tissues to fractionated irradiation: effect of repair, in fractionation in radiotherapy. Taylor & Francis, London. pp 53–99

    Google Scholar 

  2. Withers HR (1994) Biology of radiation oncology. In: Tobias JS, Thomas PRM (eds) Current radiation oncology. Edward Arnold, London. pp 5–23

    Google Scholar 

  3. Chieng PU, Huang TS, Chang CC, Chong PN, Tien RD, Su CT (1991) Reduced hypothalamic blood flow after radiation treatment of nasopharyngeal cancer: SPECT studies in 34 patients. AJNR Am J Neuroradiol 12:661–665 Medline

    PubMed  CAS  Google Scholar 

  4. Robinson IC, Fairhall KM, Hendry JH, Shalet SM (2001) Differential radiosensitivity of hypothalamo-pituitary function in the young adult rat. J Endocrinol 169:519–526 Medline. doi:10.1677/joe.0.1690519

    PubMed  CAS  Google Scholar 

  5. Hochberg Z, Kuten A, Hertz P, Tatcher M, Kedar A, Benderly A (1983) The effect of single-dose radiation on cell survival and growth hormone secretion by rat anterior pituitary cells. Radiat Res 94:508–512 Medline. doi:10.2307/3575908

    PubMed  CAS  Google Scholar 

  6. Constine LS, Woolf PD, Cann D et al (1993) Hypothalamic-pituitary dysfunction after radiation for brain tumors. N Engl J Med 328:87–94 Medline. doi:10.1056/NEJM199301143280203

    PubMed  CAS  Google Scholar 

  7. Clayton PE, Shalet SM (1991) Dose dependency of time of onset of radiation-induced growth hormone deficiency. J Pediatr 118:226–228 Medline. doi:10.1016/S0022-3476(05)80487-1

    PubMed  CAS  Google Scholar 

  8. Littley MD, Shalet SM, Beardwell CG, Robinson EL, Sutton ML (1989) Radiation-induced hypopituitarism is dose-dependent. Clin Endocrinol (Oxf) 31:363–373 Medline

    CAS  Google Scholar 

  9. Lam KS, Tse VK, Wang C, Yeung RT, Ho JH (1991) Effects of cranial irradiation on hypothalamic-pituitary function—a 5-year longitudinal study in patients with nasopharyngeal carcinoma. Q J Med 78:165–176 Medline

    PubMed  CAS  Google Scholar 

  10. Duffner PK, Cohen ME, Voorhess ML et al (1985) Long-term effects of cranial irradiation on endocrine function in children with brain tumors. A prospective study. Cancer 56:2189–2193 Medline. doi:10.1002/1097–0142(19851101)56:92189::AID-CNCR2820560909≥3.0.CO;2-I

    PubMed  CAS  Google Scholar 

  11. Pai HH, Thornton A, Katznelson L et al (2001) Hypothalamic/pituitary function following high-dose conformal radiotherapy to the base of skull: demonstration of a dose-effect relationship using dose-volume histogram analysis. J Radiat Oncol Biol Phys 49:1079–1092 doi:10.1016/S0360-3016(00)01387-0

    CAS  Google Scholar 

  12. Samaan NA, Vieto R, Schultz PN et al (1982) Hypothalamic, pituitary and thyroid dysfunction after radiotherapy to the head and neck. Int J Radiat Oncol Biol Phys 8:1857–1867 Medline

    PubMed  CAS  Google Scholar 

  13. Chen MS, Lin FJ, Huang MJ et al (1989) Prospective hormone study of hypothalamic-pituitary function in patients with nasopharyngeal carcinoma after high dose irradiation. Jpn J Clin Oncol 19:265–270 Medline

    PubMed  CAS  Google Scholar 

  14. Shalet SM, Beardwell CG, Pearson D, Jones PH (1976) The effect of varying doses of cerebral irradiation on growth hormone production in childhood. Clin Endocrinol (Oxf) 5:287–290 Medline

    CAS  Google Scholar 

  15. Brauner R, Czernichow P, Rappaport R (1986) Greater susceptibility to hypothalamopituitary irradiation in younger children with acute lymphoblastic leukemia. J Pediatr 108:332 Medline. doi:10.1016/S0022-3476(86)81027-7

    PubMed  CAS  Google Scholar 

  16. Samaan NA, Schultz PN, Yang KP et al (1987) Endocrine complications after radiotherapy for tumors of the head and neck. J Lab Clin Med 109:364–372 Medline

    PubMed  CAS  Google Scholar 

  17. Ogilvy-Stuart AL, Clark DJ, Wallace WH et al (1992) Endocrine deficit after fractionated total body irradiation. Arch Dis Child 67:1107–1110 Medline

    PubMed  CAS  Google Scholar 

  18. Littley MD, Shalet SM, Morgenstern GR, Deakin DP (1991) Endocrine and reproductive dysfunction following fractionated total body irradiation in adults. Q J Med 78:265–274 Medline

    PubMed  CAS  Google Scholar 

  19. Agha A, Sherlock M, Brennan S et al (2005) Hypothalamic-pituitary dysfunction after irradiation of nonpituitary brain tumors in adults. J Clin Endocrinol Metab 90:6355–6360 Medline. doi:10.1210/jc.2005-1525

    PubMed  CAS  Google Scholar 

  20. Littley MD, Shalet SM, Beardwell CG, Ahmed SR, Applegate G, Sutton ML (1989) Hypopituitarism following external radiotherapy for pituitary tumours in adults. Q J Med 70:145–160 Medline

    PubMed  CAS  Google Scholar 

  21. Schmiegelow M, Lassen S, Poulsen HS et al (2000) Growth hormone response to a growth hormone-releasing hormone stimulation test in a population-based study following cranial irradiation of childhood brain tumors. Horm Res 54:53–59 Medline. doi:10.1159/000053232

    PubMed  CAS  Google Scholar 

  22. Spoudeas HA, Hindmarsh PC, Matthews DR, Brook CG (1996) Evolution of growth hormone neurosecretory disturbance after cranial irradiation for childhood brain tumours: a prospective study. J Endocrinol 150:329–342 Medline. doi:10.1677/joe.0.1500329

    PubMed  CAS  Google Scholar 

  23. Achermann JC, Brook CG, Hindmarsh PC (2000) The GH response to low-dose bolus growth hormone-releasing hormone (GHRH(1-29)NH2) is attenuated in patients with longstanding post-irradiation GH insufficiency. Eur J Endocrinol 142:359–364 Medline. doi:10.1530/eje.0.1420359

    PubMed  CAS  Google Scholar 

  24. Darzy KH, Aimaretti G, Wieringa G, Gattamaneni HR, Ghigo E, Shalet SM (2003) The usefulness of the combined growth hormone (GH)-releasing hormone and arginine stimulation test in the diagnosis of radiation-induced GH deficiency is dependent on the post-irradiation time interval. J Clin Endocrinol Metab 88:95–102 Medline. doi:10.1210/jc.2002-021094

    PubMed  CAS  Google Scholar 

  25. Brada M, Rajan B, Traish D et al (1993) The long-term efficacy of conservative surgery and radiotherapy in the control of pituitary adenomas. Clin Endocrinol (Oxf) 38:571–578 Medline

    CAS  Google Scholar 

  26. Rush S, Cooper PR (1997) Symptom resolution, tumor control, and side effects following postoperative radiotherapy for pituitary macroadenomas. Int J Radiat Oncol Biol Phys 37:1031–1034 Medline. doi:10.1016/S0360-3016(96)00586-X

    PubMed  CAS  Google Scholar 

  27. Shalet SM, Beardwell CG, Morris-Jones PH, Pearson D (1975) Pituitary function after treatment of intracranial tumours in children. Lancet 2:104–107 Medline. doi:10.1016/S0140-6736(75)90006-9

    PubMed  CAS  Google Scholar 

  28. Costin G (1988) Effects of low-dose cranial radiation on growth hormone secretory dynamics and hypothalamic-pituitary function. Am J Dis Child 142:847–852

    PubMed  CAS  Google Scholar 

  29. Kirk JA, Raghupathy P, Stevens MM et al (1987) Growth failure and growth-hormone deficiency after treatment for acute lymphoblastic leukaemia. Lancet 1:190–193 Medline. doi:10.1016/S0140-6736(87)90004-3

    PubMed  CAS  Google Scholar 

  30. Brennan BM, Rahim A, Mackie EM, Eden OB, Shalet SM (1998) Growth hormone status in adults treated for acute lymphoblastic leukaemia in childhood. Clin Endocrinol (Oxf) 48:777–783 Medline. doi:10.1046/j.1365-2265.1998.00438.x

    CAS  Google Scholar 

  31. Giorgiani G, Bozzola M, Locatelli F et al (1995) Role of busulfan and total body irradiation on growth of prepubertal children receiving bone marrow transplantation and results of treatment with recombinant human growth hormone. Blood 86:825–831 Medline

    PubMed  CAS  Google Scholar 

  32. Brauner R, Adan L, Souberbielle JC et al (1997) Contribution of growth hormone deficiency to the growth failure that follows bone marrow transplantation. J Pediatr 130:785–792 Medline. doi:10.1016/S0022-3476(97)80022-4

    PubMed  CAS  Google Scholar 

  33. Papadimitriou A, Urena M, Hamill G, Stanhope R, Leiper AD (1991) Growth hormone treatment of growth failure secondary to total body irradiation and bone marrow transplantation. Arch Dis Child 66:689–692 Medline

    PubMed  CAS  Google Scholar 

  34. Olshan JS, Willi SM, Gruccio D, Moshang T Jr (1993) Growth hormone function and treatment following bone marrow transplant for neuroblastoma. Bone Marrow Transplant 12:381–385 Medline

    PubMed  CAS  Google Scholar 

  35. Gleeson HK, Gattamaneni HR, Smethurst L, Brennan BM, Shalet SM (2004) Reassessment of growth hormone status is required at final height in children treated with growth hormone replacement after radiation therapy. J Clin Endocrinol Metab 89:662–666 Medline. doi:10.1210/jc.2003-031224:

    PubMed  CAS  Google Scholar 

  36. Shalet SM, Toogood AA, Rahim A, Brennan BMD (1998) The diagnosis of growth hormone deficiency in children and adults. Endocr Rev 19:203–223 Medline. doi:10.1210/er.19.2.203

    PubMed  CAS  Google Scholar 

  37. Lustig RH, Schriock EA, Kaplan SL, Grumbach MM (1985) Effect of growth hormone-releasing factor on growth hormone release in children with radiation-induced growth hormone deficiency. Pediatrics 76:274–279 Medline

    PubMed  CAS  Google Scholar 

  38. Grossman A, Savage MO, Blacklay A et al (1985) The use of growth hormone-releasing hormone in the diagnosis and treatment of short stature. Horm Res 22:52–57 Medline

    PubMed  CAS  Google Scholar 

  39. Oberfield SE, Kirkland JL, Frantz A, Allen JC, Levine LS (1987) Growth hormone response to GRF 1-44 in children following cranial irradiation for central nervous system tumors. Am J Pediatr Hematol Oncol 9:233–238 Medline. doi:10.1097/00043426-198724000-00010

    PubMed  CAS  Google Scholar 

  40. Crosnier H, Brauner R, Rappaport R (1988) Growth hormone response to growth hormone-releasing hormone (hp GHRH1-44) as an index of growth hormone secretory dysfunction after prophylactic cranial irradiation for acute lymphoblastic leukemia (24 grays). Acta Paediatr Scand 77:681–687 Medline

    PubMed  CAS  Google Scholar 

  41. Lissett CA, Saleem S, Rahim A, Brennan BM, Shalet SM (2004) The impact of irradiation on growth hormone responsiveness to provocative agents is stimulus dependent: results in 161 individuals with radiation damage to the somatotropic axis. J Clin Endocrinol Metab 86:663–668 Medline. doi:10.1210/jc.86.2.663

    Google Scholar 

  42. Ahmed SR, Shalet SM, Beardwell CG (1986) The effects of cranial irradiation on growth hormone secretion. Acta Paediatr Scand 75:255–260 Medline

    PubMed  CAS  Google Scholar 

  43. Romshe CA, Zipf WB, Miser A, Miser J, Sotos JF, Newton WA (1984) Evaluation of growth hormone release and human growth hormone treatment in children with cranial irradiation-associated short stature. J Pediatr 104:177–181 Medline. doi:10.1016/S0022-3476(84)80988-9

    PubMed  CAS  Google Scholar 

  44. Dickinson WP, Berry DH, Dickinson L et al (1978) Differential effects of cranial radiation on growth hormone response to arginine and insulin infusion. J Pediatr 92:754–757 Medline. doi:10.1016/S0022-3476(78)80143-7

    PubMed  CAS  Google Scholar 

  45. Chrousos GP, Poplack D, Brown T, O’Neill D, Schwade J, Bercu BB (1982) Effects of cranial radiation on hypothalamic-adenohypophyseal function: abnormal growth hormone secretory dynamics. J Clin Endocrinol Metab 54:1135–1139 Medline

    Article  PubMed  CAS  Google Scholar 

  46. Darzy K, Pezzoli S, Thorner M, Shalet S (2005) The dynamics of GH secretion in adult cancer survivors with severe GH deficiency acquired following brain irradiation in childhood for non-pituitary brain tumors: evidence for preserved pulsatility and diurnal variation with increased secretory disorderliness. J Clin Endocrinol Metab 90:2794–2803 Medline. doi:10.1210/jc.2004-2002

    PubMed  CAS  Google Scholar 

  47. Toogood AA, Nass RM, Pezzoli SS, O’Neill PA, Thorner MO, Shalet SM (1997) Preservation of growth hormone pulsatility despite pituitary pathology, surgery, and irradiation. J Clin Endocrinol Metab 82:2215–2221 Medline. doi:10.1210/jc.82.7.2215

    PubMed  CAS  Google Scholar 

  48. Reutens AT, Veldhuis JD, Hoffman DM, Leung KC, Ho KK (1996) A highly sensitive growth hormone (GH) enzyme-linked immunosorbent assay uncovers increased contribution of a tonic mode of GH secretion in adults with organic GH deficiency. J Clin Endocrinol Metab 81:1591–1597 Medline. doi:10.1210/jc.81.4.1591

    PubMed  CAS  Google Scholar 

  49. Baum HB, Biller BM, Katznelson L et al (1996) Assessment of growth hormone (GH) secretion in men with adult-onset GH deficiency compared with that in normal men–a clinical research center study. J Clin Endocrinol Metab 81:84–92 Medline. doi:10.1210/jc.81.1.84

    PubMed  CAS  Google Scholar 

  50. Roelfsema F, Biermasz NR, Veldhuis JD (2002) Pulsatile, nyctohemeral and entropic characteristics of GH secretion in adult GH-deficient patients: selectively decreased pulsatile release and increased secretory disorderliness with preservation of diurnal timing and gender distinctions. Clin Endocrinol (Oxf) 56:79–87 Medline. doi:10.1046/j.0300-0664.2001.01433.x

    Google Scholar 

  51. Jessup SK, Malow BA, Symons KV, Barkan AL (2004) Blockade of endogenous growth hormone-releasing hormone receptors dissociates nocturnal growth hormone secretion and slow-wave sleep. Eur J Endocrinol 151:561–566 Medline. doi10.1530/eje.0.1510561:

    PubMed  CAS  Google Scholar 

  52. Ocampo-Lim B, Guo W, DeMott-Friberg R, Barkan AL, Jaffe CA (1996) Nocturnal growth hormone (GH) secretion is eliminated by infusion of GH-releasing hormone antagonist. J Clin Endocrinol Metab 81:4396–4399 Medline. doi:10.1210/jc.81.12.4396

    PubMed  CAS  Google Scholar 

  53. Wehrenberg WB, Brazeau P, Luben R, Bohlen P, Guillemin R (1982) Inhibition of the pulsatile secretion of growth hormone by monoclonal antibodies to the hypothalamic growth hormone releasing factor (GRF). Endocrinology 111:2147–2148 Medline

    PubMed  CAS  Google Scholar 

  54. Darzy KH, Pezzoli SS, Thorner MO, Shalet SM (2007) Cranial irradiation and growth hormone neurosecretory dysfunction: a critical appraisal. J Clin Endocrinol Metab 92:1666–1672 Medline. doi:10.1210/jc.2006-2599

    PubMed  CAS  Google Scholar 

  55. Sklar CA, Constine LS (1995) Chronic neuroendocrinological sequelae of radiation therapy. Int J Radiat Oncol Biol Phys 31:1113–1121 Medline. doi:10.1016/0360-3016(94)00427-M

    PubMed  CAS  Google Scholar 

  56. Kashio Y, Chihara K, Kita T et al (1987) Effect of oral glucose administration on plasma growth hormone-releasing hormone (GHRH)-like immunoreactivity levels in normal subjects and patients with idiopathic GH deficiency: evidence that GHRH is released not only from the hypothalamus but also from extrahypothalamic tissue. J Clin Endocrinol Metab 64:92–97 Medline

    PubMed  CAS  Google Scholar 

  57. Masuda A, Shibasaki T, Hotta M et al (1990) Insulin-induced hypoglycemia, L-dopa and arginine stimulate GH secretion through different mechanisms in man. Regul Pept 31:53–64 Medline. doi:10.1016/0167-0115(90)90195-3

    PubMed  CAS  Google Scholar 

  58. Koppeschaar HP, ten Horn CD, Thijssen JH, Page MD, Dieguez C, Scanlon MF (1992) Differential effects of arginine on growth hormone releasing hormone and insulin induced growth hormone secretion. Clin Endocrinol (Oxf) 36:487–490 Medline

    CAS  Google Scholar 

  59. Hanew K, Utsumi A (2002) The role of endogenous GHRH in arginine-, insulin-, clonidine- and l-dopa-induced GH release in normal subjects. Eur J Endocrinol 146:197–202 Medline. doi:10.1530/eje.0.1460197

    PubMed  CAS  Google Scholar 

  60. Giustina A, Veldhuis JD (1998) Pathophysiology of the neuroregulation of growth hormone secretion in experimental animals and the human. Endocr Rev 19:717–797 Medline. doi:10.1210/er.19.6.717

    PubMed  CAS  Google Scholar 

  61. Veldhuis JD, Farhy L, Weltman AL, Kuipers J, Weltman J, Wideman L (2005) Gender modulates sequential suppression and recovery of pulsatile growth hormone secretion by physiological feedback signals in young adults. J Clin Endocrinol Metab 90:2874–2881 Medline. doi:10.1210/jc.2004-1363

    PubMed  CAS  Google Scholar 

  62. Soares-Welch C, Farhy L, Mielke KL et al (2005) Complementary secretagogue pairs unmask prominent gender-related contrasts in mechanisms of growth hormone pulse renewal in young adults. J Clin Endocrinol Metab 90:2225–2232 Medline. doi:10.1210/jc.2004-1365

    PubMed  CAS  Google Scholar 

  63. Hoeck HC, Vestergaard P, Jakobsen PE, Laurberg P (1995) Test of growth hormone secretion in adults: poor reproducibility of the insulin tolerance test. Eur J Endocrinol 133:305–312

    PubMed  CAS  Google Scholar 

  64. Diamond MP, Jones T, Caprio S et al (1993) Gender influences counterregulatory hormone responses to hypoglycemia. Metabolism 42:1568–1572 Medline. doi:10.1016/0026-0495(93)90152-E

    PubMed  CAS  Google Scholar 

  65. Osterman PO, Wide L (1976) The insulin tolerance test after pre-treatment with dexamethasone. Acta Endocrinol (Copenh) 83:341–356 Medline

    CAS  Google Scholar 

  66. Biller BM, Samuels MH, Zagar A et al (2002) Sensitivity and specificity of six tests for the diagnosis of adult GH deficiency. J Clin Endocrinol Metab 87:2067–2079 Medline. doi:10.1210/jc.87.5.2067

    PubMed  CAS  Google Scholar 

  67. Hirvonen E, Seppala M, Karonen SL, Adlercreutz H (1977) Luteinizing hormone responses to luteinizing hormone releasing hormone, and growth hormone and cortisol responses to insulin induced hypoglycaemia in functional secondary amenorrhoea. Acta Endocrinol (Copenh) 84:225–236 Medline

    CAS  Google Scholar 

  68. Blatt J, Lee P, Suttner J, Finegold D (1988) Pulsatile growth hormone secretion in children with acute lymphoblastic leukemia after 1800 cGy cranial radiation. Int J Radiat Oncol Biol Phys 15:1001–1006 Medline

    PubMed  CAS  Google Scholar 

  69. Crowne EC, Moore C, Wallace WH et al (1992) A novel variant of growth hormone (GH) insufficiency following low dose cranial irradiation. Clin Endocrinol (Oxf) 36:59–68 Medline

    CAS  Google Scholar 

  70. Stubberfield TG, Byrne GC, Jones TW (1995) Growth and growth hormone secretion after treatment for acute lymphoblastic leukemia in childhood. 18-Gy versus 24-Gy cranial irradiation. J Pediatr Hematol Oncol 17:167–171 Medline. doi:10.1097/00043426-199505000-00012

    PubMed  CAS  Google Scholar 

  71. Lannering B, Rosberg S, Marky I, Moell C, Albertsson-Wikland K (1995) Reduced growth hormone secretion with maintained periodicity following cranial irradiation in children with acute lymphoblastic leukaemia. Clin Endocrinol (Oxf) 42:153–159 Medline

    CAS  Google Scholar 

  72. Blatt J, Bercu BB, Gillin JC, Mendelson WB, Poplack DG (1984) Reduced pulsatile growth hormone secretion in children after therapy for acute lymphoblastic leukemia. J Pediatr 104:182–186 Medline. doi:10.1016/S0022-3476(84)80989-0

    PubMed  CAS  Google Scholar 

  73. Moell C, Garwicz S, Westgren U, Wiebe T, Albertsson-Wikland K (1989) Suppressed spontaneous secretion of growth hormone in girls after treatment for acute lymphoblastic leukaemia. Arch Dis Child 64:252–258 Medline

    PubMed  CAS  Google Scholar 

  74. Ryalls M, Spoudeas HA, Hindmarsh PC et al (1993) Short-term endocrine consequences of total body irradiation and bone marrow transplantation in children treated for leukemia. J Endocrinol 136:331–338 Medline

    PubMed  CAS  Google Scholar 

  75. Lannering B, Albertsson-Wikland K (1987) Growth hormone release in children after cranial irradiation. Horm Res 27:13–22 Medline

    PubMed  CAS  Google Scholar 

  76. Moell C (1988) Disturbed pubertal growth in girls after acute leukaemia: a relative growth hormone insufficiency with late presentation. Acta Paediatr Scand Suppl 343:162–166 Medline

    PubMed  CAS  Google Scholar 

  77. Pasqualini T, Escobar ME, Domene H, Muriel FS, Pavlovsky S, Rivarola MA (1987) Evaluation of gonadal function following long-term treatment for acute lymphoblastic leukemia in girls. Am J Pediatr Hematol Oncol 9:15–22 Medline. doi:10.1097/00043426-198721000-00004

    PubMed  CAS  Google Scholar 

  78. Sanders JE, Buckner CD, Leonard JM et al (1983) Late effects on gonadal function of cyclophosphamide, total-body irradiation, and marrow transplantation. Transplantation 36:252–255 Medline. doi:10.1097/00007890-198309000-00005

    PubMed  CAS  Google Scholar 

  79. Rappaport R, Brauner R, Czernichow P et al (1982) Effect of hypothalamic and pituitary irradiation on pubertal development in children with cranial tumors. J Clin Endocrinol Metab 54:1164–1168 Medline

    PubMed  CAS  Google Scholar 

  80. Yoshimoto Y, Moridera K, Imura H (1975) Restoration of normal pituitary gonadotropin reserve by administration of luteinizing-hormone-releasing hormone in patients with hypogonadotropic hypogonadism. N Engl J Med 292:242–245 Medline

    Article  PubMed  CAS  Google Scholar 

  81. Hall JE, Martin KA, Whitney HA, Landy H, Crowley WF Jr (1994) Potential for fertility with replacement of hypothalamic gonadotropin-releasing hormone in long term female survivors of cranial tumors. J Clin Endocrinol Metab 79:1166–1172 Medline. doi:10.1210/jc.79.4.1166

    PubMed  CAS  Google Scholar 

  82. Brauner R, Rappaport R (1985) Precocious puberty secondary to cranial irradiation for tumors distant from the hypothalamo-pituitary area. Horm Res 22:78–82 Medline

    PubMed  CAS  Google Scholar 

  83. Leiper AD, Stanhope R, Kitching P, Chessells JM (1987) Precocious and premature puberty associated with treatment of acute lymphoblastic leukaemia. Arch Dis Child 62:1107–1112 Medline

    PubMed  CAS  Google Scholar 

  84. Ogilvy-Stuart AL, Clayton PE, Shalet SM (1994) Cranial irradiation and early puberty. J Clin Endocrinol Metab 78:1282–1286 Medline. doi:10.1210/jc.78.6.1282

    PubMed  CAS  Google Scholar 

  85. Lannering B, Jansson C, Rosberg S, Albertsson-Wikland K (1997) Increased LH and FSH secretion after cranial irradiation in boys. Med Pediatr Oncol 29:280–287 Medline. doi:10.1002/(SICI)1096-911X(199710)29:4≤280::AID-MPO8≥3.0.CO;2-I

    PubMed  CAS  Google Scholar 

  86. Roth C, Schmidberger H, Schaper O et al (2004) Cranial irradiation of female rats causes dose-dependent and age-dependent activation or inhibition of pubertal development. Pediatr Res 47:586–591 Medline. doi:10.1203/00006450-200005000-00005

    Google Scholar 

  87. Roth C, Schmidberger H, Lakomek M, Witt O, Wuttke W, Jarry H (2001) Reduction of gamma-aminobutyric acid-ergic neurotransmission as a putative mechanism of radiation induced activation of the gonadotropin releasing-hormone-pulse generator leading to precocious puberty in female rats. Neurosci Lett 297:45–48 Medline. doi:10.1016/S0304-3940(00)01663-3

    PubMed  CAS  Google Scholar 

  88. Quigley C, Cowell C, Jimenez M et al (1989) Normal or early development of puberty despite gonadal damage in children treated for acute lymphoblastic leukemia. N Engl J Med 321:143–151 Medline

    Article  PubMed  CAS  Google Scholar 

  89. Livesey EA, Hindmarsh PC, Brook CG et al (1990) Endocrine disorders following treatment of childhood brain tumours. Br J Cancer 61:622–625 Medline

    PubMed  CAS  Google Scholar 

  90. Darzy KH, Shalet SM (2005) Absence of adrenocorticotropin (ACTH) neurosecretory dysfunction but increased cortisol concentrations and production rates in ACTH-replete adult cancer survivors after cranial irradiation for nonpituitary brain tumors. J Clin Endocrinol Metab 90:5217–5225 Medline. doi:10.1210/jc.2005-0830

    PubMed  CAS  Google Scholar 

  91. Mohn A, Chiarelli F, Di Marzio A, Impicciatore P, Marsico S, Angrilli F (1997) Thyroid function in children treated for acute lymphoblastic leukemia. J Endocrinol Invest 20:215–219 Medline

    PubMed  CAS  Google Scholar 

  92. Lando A, Holm K, Nysom K et al (2001) Thyroid function in survivors of childhood acute lymphoblastic leukaemia: the significance of prophylactic cranial irradiation. Clin Endocrinol (Oxf) 55:21–25 Medline. doi:10.1046/j.1365-2265.2001.01292.x

    CAS  Google Scholar 

  93. Carter EP, Leiper AD, Chessells JM, Hurst A (1989) Thyroid function in children after treatment for acute lymphoblastic leukaemia. Arch Dis Child 64:631 Medline

    PubMed  CAS  Google Scholar 

  94. Oberfield SE, Sklar C, Allen J et al (1992) Thyroid and gonadal function and growth of long-term survivors of medulloblastoma/PNET. In: Green DM, D’Angio GJ (eds) Late effects of treatment for childhood cancer. Wiley-Liss Inc, New York. pp 55–62

    Google Scholar 

  95. Rose SR, Lustig RH, Pitukcheewanont P et al (1999) Diagnosis of hidden central hypothyroidism in survivors of childhood cancer. J Clin Endocrinol Metab 84:4472–4479 Medline. doi:10.1210/jc.84.12.4472

    PubMed  CAS  Google Scholar 

  96. Schmiegelow M, Feldt-Rasmussen U, Rasmussen AK, Poulsen HS, Muller J (2003) A population-based study of thyroid function after radiotherapy and chemotherapy for a childhood brain tumor. J Clin Endocrinol Metab 88:136–140 Medline. doi:10.1210/jc.2002-020380

    PubMed  CAS  Google Scholar 

  97. Darzy KH, Shalet SM (2005) Circadian and stimulated thyrotropin secretion in cranially irradiated adult cancer survivors. J Clin Endocrinol Metab 90:6490–6497 Medline. doi:10.1210/jc.2005-1593

    PubMed  CAS  Google Scholar 

  98. Coke C, Andrews DW, Corn BW et al (1997) Multiple fractionated stereotactic radiotherapy of residual pituitary macroadenomas: initial experience. Stereotact Funct Neurosurg 69:183–190 Medline. doi:10.1159/000099872

    PubMed  CAS  Google Scholar 

  99. Mitsumori M, Shrieve DC, Alexander E III et al (1998) Initial clinical results of LINAC-based stereotactic radiosurgery and stereotactic radiotherapy for pituitary adenomas. Int J Radiat Oncol Biol Phys 42:573–580 Medline. doi:10.1016/S0360-3016(98)00256-9

    PubMed  CAS  Google Scholar 

  100. Paek SH, Downes MB, Bednarz G et al (2005) Integration of surgery with fractionated stereotactic radiotherapy for treatment of nonfunctioning pituitary macroadenomas. Int J Radiat Oncol Biol Phys 61:795–808 Medline. doi:10.1016/j.ijrobp.2004.07.688

    PubMed  Google Scholar 

  101. Minniti G, Traish D, Ashley S, Gonsalves A, Brada M (2006) Fractionated stereotactic conformal radiotherapy for secreting and nonsecreting pituitary adenomas. Clin Endocrinol (Oxf) 64:542–548 Medline. doi:10.1111/j.1365-2265.2006.02506.x

    CAS  Google Scholar 

  102. Milker-Zabel S, Debus J, Thilmann C, Schlegel W, Wannenmacher M (2001) Fractionated stereotactically guided radiotherapy and radiosurgery in the treatment of functional and nonfunctional adenomas of the pituitary gland. Int J Radiat Oncol Biol Phys 50:1279–1286 Medline. doi:10.1016/S0360-3016(01)01535-8

    PubMed  CAS  Google Scholar 

  103. Colin P, Jovenin N, Delemer B et al (2005) Treatment of pituitary adenomas by fractionated stereotactic radiotherapy: a prospective study of 110 patients. Int J Radiat Oncol Biol Phys 62:333–341 Medline. doi:10.1016/j.ijrobp.2004.09.058

    PubMed  Google Scholar 

  104. Hayashi M, Izawa M, Hiyama H et al (1999) Gamma Knife radiosurgery for pituitary adenomas. Stereotact Funct Neurosurg 72(Suppl 1):111–118 Medline. doi:10.1159/000056446

    PubMed  Google Scholar 

  105. Muacevic A, Uhl E, Wowra B (2004) Gamma knife radiosurgery for nonfunctioning pituitary adenomas. Acta Neurochir Suppl (Wien) 91:51–54

    CAS  Google Scholar 

  106. Jane JA Jr, Vance ML, Woodburn CJ, Laws ER Jr (2003) Stereotactic radiosurgery for hypersecreting pituitary tumors: part of a multimodality approach. Neurosurg Focus 14:e12 Medline

    Article  PubMed  Google Scholar 

  107. Vladyka V, Liscak R, Simonova G et al (2000) [Radiosurgical treatment of hypophyseal adenomas with the gamma knife: results in a group of 163 patients during a 5-year period]. Cas Lek Cesk 139:757–766 Medline

    PubMed  CAS  Google Scholar 

  108. Sheehan JP, Kondziolka D, Flickinger J, Lunsford LD (2002) Radiosurgery for residual or recurrent nonfunctioning pituitary adenoma. J Neurosurg 97:408–414 Medline

    PubMed  Google Scholar 

  109. Kong DS, Lee JI. Lim do H, Kim KW, Shin HJ, Nam DH, Park K, Kim JH (2007) The efficacy of fractionated radiotherapy and stereotactic radiosurgery for pituitary adenomas: long-term results of 125 consecutive patients treated in a single institution. Cancer 110:854–860 Medline. doi:10.1002/cncr.22860

    PubMed  Google Scholar 

  110. Losa M, Valle M, Mortini P et al (2004) Gamma knife surgery for treatment of residual nonfunctioning pituitary adenomas after surgical debulking. J Neurosurg 100:438–444 Medline

    PubMed  Google Scholar 

  111. Pollock BE, Carpenter PC (2003) Stereotactic radiosurgery as an alternative to fractionated radiotherapy for patients with recurrent or residual nonfunctioning pituitary adenomas. Neurosurgery 53:1086–1091. discussion 1091–1094 Medline. doi:10.1227/01.NEU.0000088661.81189.66

    Google Scholar 

  112. Jagannathan J, Sheehan JP, Pouratian N, Laws ER, Steiner L, Vance ML (2007) Gamma Knife surgery for Cushing’s disease. J Neurosurg 106:980–987 Medline

    PubMed  Google Scholar 

  113. Mingione V, Yen CP, Vance ML et al (2006) Gamma surgery in the treatment of nonsecretory pituitary macroadenoma. J Neurosurg 104:876–883 Medline

    PubMed  Google Scholar 

  114. Attanasio R, Epaminonda P, Motti E et al (2003) Gamma-knife radiosurgery in acromegaly: a 4-year follow-up study. J Clin Endocrinol Metab 88:3105–3112 Medline. doi:10.1210/jc.2002-021663

    PubMed  CAS  Google Scholar 

  115. Wowra B, Stummer W (2002) Efficacy of gamma knife radiosurgery for nonfunctioning pituitary adenomas: a quantitative follow up with magnetic resonance imaging-based volumetric analysis. J Neurosurg 97:429–432 Medline

    PubMed  Google Scholar 

  116. Jezkova J, Marek J, Hana V et al (2006) Gamma knife radiosurgery for acromegaly–long-term experience. Clin Endocrinol (Oxf) 64:588–595 Medline. doi:10.1111/j.1365-2265.2006.02513.x

    Google Scholar 

  117. Feigl GC, Bonelli CM, Berghold A, Mokry M (2002) Effects of gamma knife radiosurgery of pituitary adenomas on pituitary function. J Neurosurg 97:415–421 Medline

    PubMed  Google Scholar 

  118. Iwai Y, Yamanaka K, Yoshioka K (2005) Radiosurgery for nonfunctioning pituitary adenomas. Neurosurgery 56:699–705. discussion 699–705 Medline. doi10.1227/01.NEU.0000156836.42945.28:

    PubMed  Google Scholar 

  119. Hoybye C, Grenback E, Rahn T, Degerblad M, Thoren M, Hulting AL (2001) Adrenocorticotropic hormone-producing pituitary tumors: 12- to 22-year follow-up after treatment with stereotactic radiosurgery. Neurosurgery 49:284–291. Discussion 291–292 Medline. doi:10.1097/00006123-200108000-00008

    PubMed  CAS  Google Scholar 

  120. Vladyka V, Liscak R, Novotny J Jr, Marek J, Jezkova J (2003) Radiation tolerance of functioning pituitary tissue in gamma knife surgery for pituitary adenomas. Neurosurgery 52:309–316. Discussion 316–317 Medline. doi:10.1227/01.NEU.0000043709.53906.31:

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ken H. Darzy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Darzy, K.H., Shalet, S.M. Hypopituitarism following radiotherapy. Pituitary 12, 40–50 (2009). https://doi.org/10.1007/s11102-008-0088-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11102-008-0088-4

Keywords

Navigation